
AD-Ai24 397 SPARSE MATRIX METHODS IN OPTIMIZATION(U) STANFORD UNIV i/i
CA SYSTEMS OPTIMIZATION LAB P E GILL ET AL. DEC 82
SOL-82-17 ARO-i8424.9-MA N88814-75-C-0267

UNCLASSIFIED F/G 12/1 N

EhhEEmhEmhoiE
EEEEnsoonsh

.4,8

1.

4

1162.

-4A-

I.

ILL8.

11625jjjj.,I 4 IIIJO -

fsCOCP ESLTO ET HR

,ATOO El.'fTf4ms-96-

AD

Systems
Optimization

Laboratory

SiPMU Han ns 13 wrniznMw

by

-hlup I. G.l, Walter *Arrm
lebael A. Sanders nd Margaret i. Wright

TS;EICL UMT SOL 2-17

8P s I

,H,

Department of Operations Research
Stanford University
Stanford, CA 94305

~~~~~~~~~~ 2-q. o*o 01 *** * ~ -- ~ ~ ~ .



i.4b
SSKATRI MT0I0IZAfCN LANOIIZAT

uP x~ Dce ]u JBS 1 u98

STrANFRoDo, CALIlFORNIA 94305
.4

4SPARSE Nhlh ITECDS IN OPII Zh/ I

"" Ph/ip K. Gill, Walter INurray,
i-} 1ichael A. Sendlers and Margaret I. Wright

TECHICAL fPog SOL 82-17
Deeember 1982

Research and reproduction of this report were partially supported by
the Department of Energy Contract AN03-76S100326, PA# DE-AT03-76ER72018;
Office of Naval Research Contract N00014-75-C-0267; National Science
Foundation Grants MCS-7926009 and ECS-8012974; Army Research Office
Contract DAA29-79-C-0110.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part Is permitted for any purposes of the
United States Goverment. This document has been approved for public
release and sale; its distribution is unlimited.

*J

o ~ * 4- - ~



,. OT,.,.TO , T.7S ...77

PlSPARSE MATRIX METHODS IN OPTIMIZATIONt - r, -
DTi ,'by o

Philip E. Gill, Walter Murray, J4t~c~~
Michael A. Saunders and Margaret H. Wright -

Systems Optimization Laboratory D3. Jot r .

Department of Operations Research A v.. j I

Stanford University 
D St*, Stanford, California 94305 l / f "* :

ABSTRACT

pti n algorit ically require the solution of many systems of linear equations
S-l la-a nmbeconstraints are present, these linear systm

cod the total computation time.
Both direct d iterativ ion solvers are needed in ractice. Unfortunately, most of the

off-the shelf solver e designed fo4ngle systems, whereas ptimization problems give rise to
hundreds or thousan Of Stems. To id refactorization, r to speed the convergence of an
'ertive method, it is e tial to note thatj is related to -1.

t .vsJ- W review various spars that arise in optimization, and discuss compromises that
a Z i're currently being made in dealing with . Since significant advances continue to be made

with single-system solverf#J give special atten to methods that allow such solvers to be used
repeatedly on a sequence of modified systems (e.g., he product-form update; use of the Schur
complement). The speed of factorizing a matrix then omes relatively less important than the
efficiency of subsequent 10 w5 very many right-han sides.

At the same time, we lthat future improvemen s to linear-equation software will be
oriented more specifically to the cue of related matrices h'

.-o

This reserch was supported by the U.S. Department of Energy Contract DE-AC03-7BSFO q26
PA No. DE-ATO-76ER72018; National Science Foundation Grants 4f60 M and P.CS.

, $62974; the Office of Naval Research Contract N00014-75-C-0267; and the U.S. Army Research
Office Contract DAAG29-79-C-0110.

t Presated as a 1nytd paper at the Spame Matrix Sympoaum, Fairfeld Glade, Tenness, October 24-rr, 182.

IP - -' 
' -

:k_ -.. . . . . .. -_ . . . . . . . . . . . . . . . . . . . . . . . . . . ..- . . - -" -_ ,-. -. r



!,... _-.__ :-. .,% : .- . --. . -- .. :.. . . - C. .. . . . , . . . .. :. .-. .: - -. .. . . . . . .-
P --

1. Introduction

1. Intrduction

1.1. Baekground. The major application of sparse matrix techniques in optimization up to the
present has been in the implementation of the simplex method for linear programming (LP) (see,
e.g., Dantsig, 1963). In fact, commercial codes for large LP problems seem to have predated codes
for sparse linear equations (even though solving a sparse LP problem requires solving many sparse
linear systems). In the commercial world today, more sparse matrix computation is probably
expended on linear programs than on any other type of problem, and linear programs involving
thousands of unknowns can be solved routinely. Because of the great success of the simplex
algorithm and the wide availability of LP codes, many large-scale optimization problems tend

,: to be formulated as purely linear programs. However, we shall see that this limitation is often
unnecessary.

Before considering particular methods, we emphasize that methods for large-scale optimiza-
tion have a special character attributable in large part to the critical importance of linear algebraic
procedures. Since dense linear algebraic techniques tend to become unreasonably expensive as the
problem dimension increases, it is usually necessary to compromise what seems to be an "ideal"
strategy. (In fact, an approach that would not even be considered for small problems may turn
out to be the best choice for some large problems.) Furthermore, the relative cost of the steps of
many optimization methods changes when the problem becomes large. For example, the perfor-

*mance of unconstrained optimization algorithms is often measured by the number of evaluations
of the objective function required for convergence. Although simplistic, this is a reasonable gauge
of effectiveness for most problems of low dimension because the number of arithmetic operations
per iteration tends to be small, and the amount of work required for storage manipulation is
negligible. However, as the size of the problem grows, the 'housekeeping' (cost of arithmetic and
data structures) becomes comparable to, and may even dominate, the cost of function evaluations.

Most optimization methods are iterative; we shall consider algorithms in which the (k + 1)-th
iterate is defined as

Zh+1 - zh + hph, (1.1)

where aA is a non-negative scalar, and the a-vector pk is called the search direction. One of
the primary applications of sparse matrix techniques in optimization is in solving one or more
systems of linear equations to obtain pA.

It is usual for thousands of iterations to be required to solve a single large optimization
problem, and hence it might appear that the computation time required would be enormous, even
with the best available sparse matrix techniques. Fortunately, the linear systems that define pk+I
are usually closely related to those that define pA; (and the degree of closeness can be controlled
to some extent by the choice of algorithm). In addition, the sequence {zh} will often converge
to the solution with only mild conditions on {pA}. Consequently, there is a certain flexibility
in the definition of pk. The design of algorithms for large-scale optimization problems involves
striking a balance between the effort expended at each iteration to compute Pt and the number
of iterations required for convergence.

1.2. Summary. The three main subdivisions of optimization are discussed in turn (unconstrained,
linearly constrained, and nonlinearly constrained). A common denominator is the need to solve
many systems of linear equations, and the need to update various factorizations in order to
deal with sequences of related equations. We indicate situations where off-the-shelf software can
be applied. Symmetric positive-definite solvers are mainly useful for unconstrained problems,
while unsymmetric solvers are essential for dealing with linear constraints. There is an inevitable



2 SParse Matrix Methods in Optimistion

emphasis on the latter because most large optimization problems currently being solved involve

sparse linear constraints.
The principal updating problem is that of replacing one column of a square matrix. However,

there exists only one generally available package for updating sparse factors in situ. We therefore
focus on methods that allow an off-the-shelf solver to be used repeatedly on the same matrix with

different right-hand sides. Such methods facilitate more general updates to sparse matrices. In
one instance, a sparse indefinite solver is needed.

The final section on nonlinear constraints covers methods that solve a sequence of simpler

subproblems, to which the preceding comment. apply.

-. Unconstradd OptImizatein

2.1. Methodi hor dense problems. The unconstrained optimization problem involves the mini-
mization of a scalar-valued objective function, i.e.

minimize F(z).

We assume that F is smooth; let #(z) and H(z) denote the gradient vector and Hessian matrix
ofF.

Many techniques are available for solving unconstrained problems in which n is small (for
recent surveys, se, e.g., Brodlie, 1977; Fletcher, 1980; Gill, Murray and Wright, 1981). The most
popular methods compute the search direction as the solution of a system of linear equations of
the form

HAP, = -#, (2.1)

where pt is the gradient of F at xt, and Ht is a suitable symmetric matrix that is most often
intended to represent (in some sense) H(zA). If HA is positive definite, the solution of (2.1) is the

4". step to the minimum of the local quadratic approximation to F at xA:

minimize Pfp + 1 PTHAp. (2.2)

The major distinctions among algorithms involve the definition of HA.
When H is the exact Hessian at 5A or a finite-difference approximation, the algorithm

based on solving (2.1) for pA is called a Newton-type method. Newton-type methods tend to be
powerful and robust when properly implemented, and exhibit quadratic convergence under mild
conditions. However, certain difficulties arise when HA is indefinite, since the quadratic function
(2.2) is unbounded below and the solution of (2.1) may be undefined. Numerous strategies have
been suggested for this cse, and often involve defining p as the solution of a linear system
with a positive-definite matrix that is closely related to the Hessian. These techniques include
the modified Cholesky factorization of Gill and Murray (1974) and various trust-region strategies
(see, e.g., Mori and Sorensen, 1982).

When an exact or finite-difference Hessian is unavailable or too expensive, a popular alterna-
tive is to use a quad-Newton method (see Dennis and Mord, 1977, for a survey). In a quasi-Newton
method, the matrix HA is an approximation to the Hessian that is updated by a low-rank change
at each iteration, based on information about the change in the gradient. The hope is that the
approximation will improve as the iterations proceed. Quasi-Newton methods typically display a
superlinear rate of convergnce in practice, and are often more efficient (in terms of computation
time) than Newton-type methods.

t~--w..-* -



. Unconstrained Optimisation

When n becomes very large, two related difficulties can occur with methods that solve (2.1)
directly: excessive computation time and insufficient storage for the n X n matrix H. Fortunately,
the Hessian matrices of many large unconstrained problems are quite sparse, and density tends
to decrease as n increases. Large problems can thus be solved efficiently using techniques that
exploit sparsity in Hh to save work and/or storage, or that do not require storage of Hh.

2.2. Newton-type methods. When the Hessian is sparse and can be computed analytically,
a Newton-type method can be implemented by applying standard sparse procedures to solve
Hkph = -gh. In particular, when H is positive definite, any efficient technique for computing a
sparse Cholesky factorisation may be applied in this context (for a survey of available software, see
Duff, 1982). Although many linear systems may need to be solved before the method converges,
all of them have the same sparsity pattern, and hence the structure needs to be analyzed only
once.

Indefiniteness in a sparse Hessian may be treated using the procedures mentioned for the
dense case. The modified Cholesky factorization (Gill and Murray, 1974) has been adapted in
a straightforward fashion to treat sparsity (see Thapa, 1980). One advantage of the modified
Cholesky approach is that indefiniteness can be detected and corrected while constructing the
factorization of the positive-definite matrix to be used in computing ph; hence, only one sparse
factorisation needs to be computed at each iteration. With trust-region methods, ph may be
obtained using off-the-shelf software for a sparse Cholesky factorization; however, these methods
typically require more than one factorisation per iteration.

When the gradient is available, but the exact Hessian is not, a finite-difference approximation
to the Hessian may be used as H,. In the general case, this requires n gradient evaluations.
However, if the sparsity pattern of the Hessian is known a priori, it is possible to choose special
vectors that allow a finite-difference approximation to H(z) to be computed with many fewer
than n evaluations of the gradient.

For example, suppose that H(z) is tridiagonal:

H(z)=
",o1 xxx

Consider the vectors
lid f (g(sh + hxj) - g(:i)), i = 1,2,

where -= (1, 0,1, 0, ... )r, = (0, 1, 0,1,...) , and h is an appropriate finite-difference interval.
Let 11,j denote the i-th component of i,, and similarly for ft. The vectors i and t are
approximations to the sums of odd and even columns of Ha, respectively. Therefore,

0 2F 02F 02F 02F,..--
Vs.'. -; 1 Oi2 V.2 N + and soon.

Thus, for example,
02F

.." tlzV,a - 1u,i Oz
2 V

TI 3



4 Spars MAu Meoth in Opmlisation

In this fashion all the elment of H& can be approximated with only two evaluations of the
gradient, regardle of the value of a.

The Idea of analysing the sparsity pattern of the Hessian in order to determine suitable finite-
dlffererw- vectors has been the subject of much recent interest. An algorithm for finding suitable
bnite-dierence vectors for a Iparse (unsymmetric) matrix is given by Curtis, Powell and Reid

* (1974), and is based on grouping together columns in which there are no overlapping elements.
The problem of finding a minimal set of vectors can be viewed as a graph coloring problem in
the directed graph that represents the sparsity pattern. A proof that finding the minimal set is
NP-hard is given in Coleman and Mor6 (1981), along with practical algorithms (see also Coleman
and Mort, 1982a).

A similar relationship with graph coloring can be developed for the case of a symmetric
matrix; imposing the requirement of symmetry on the sparse matrix transforms the associated
graph into a undirected graph. Although the problem of finding a minimal set is NP-complete (see
McCormick, 1981), effective algorithms have been developed based on graph-theoretic heuristics.
The algorithms are based on principles similar to those for the unsymmetric case, but are
considerably complicated by exploiting symmetry.

A finite-difference Newton-type method for sparse problems thus begins with a procedure that
analyses the sparsity pattern in order to determine suitable finite-difference vectors. Algorithms
for finding these vectors have been given by Powell and Toint (1979) and Coleman and Mord
(1982b). Once a sparse finite-difference Hessian approximation has been computed, a sparse
factorisation can be computed as with the exact Hessian.

LL Spase qas-Newton methods. Because of the great success of quasi-Newton methods on
dense problems, it is natural to consider how such methods might be extended to take advantage,.
of sparsity in the Hessian. This extension was sugested first for the case of sparse nonlinear
equations by Schubert (1970), and was analysed by Marwil (1978). Discussions of sparse quasi-
Newton methods for optimization and nonlinear equations are given in Toint (1977), Dennis and
Schnabel (1979), Toint (1979), Shanno (1980), Steihaug (1980), Thapa (1980), Powell (1981),
Dennis and Marwil (1982) and Sorensen (1982). In the remainder of this section we give a brief
description of sparse quasi-Newton methods applied to unconstrained optimization.

In quasi-Newton methods for dense problems, the Hessian approximation H is updated at
each iteration by the relationship

HA; +I =h,,+U,,.

The update matrices U, associated with many dense quasi-Newton methods are of rank two,
and can be shown to be the minimum-norm symmetric change in H, subject to satisfying the
quasi-Newton condition

Hh+18h = y,,, (2.3)

where s, = +1 - zk and ph = #h+1 - g (see, e.g., Dennis and Mor6, 1977). By suitable
choice of the steplength ah in (1.1), the property of hereditary positive-definitenen can also be
maintained (I.e., Hk+l is positive definite if H is). However, the update matrices U do not
retain the sparsity pattern of the Hessian.

The initial approach to developing sparse quasi-Newton updates was to impose the additional
constraint of retaning sparsity on the norm-minimisation problem (Powell, 1976; Toint, 1977).
Let i be defted as the set of indices {(i, 1 I Hq(z) = 0}, so that X' represents the specified

4 sparslty pattern of the Hessian, and assume that H, has the same sparsity pattern. A sparse



I Uncontraned Opfimiim a 5

update matrix U( is then the solution of

minime HUll
subject to (H- + U)8, k (2.4)

CUq =O for (iJ)E M.

Let ") denote the vector .A with the sparsity pattern of the j-th column of Hk imposed.
When the norm in (2.4) is the Frobenius norm, the solution is given by

=h Y O -+- + (2.5)

where ej is the j-th unit vector and X is the vector of Lagrange multipliers associated with the
subproblem (2.4). The vector X is the solution of the linear system

QX = V, - H, 8,, (2.6)

where

Q ~ '~ + 1IDillee2

* The matrix Q is symmetric and has the same sparsity pattern as Hk; Q is positive definite if and
only if Iu( (A11 > 0 for all j. (The sparse analogue of wy quasi-Newton formula may be obtained
using a similar analysis; see Shanno, 1979, and Thapa, 1980).

Thus far, sparse quasi-Newton methods have not enjoyed the great success of their dense
counterparts. First, there are certain complications that result from the requirement of sparsity.
In particular, note that the update matrix Ut (2.5) is of rank n, rather than of rank two; this
means that the new approximate Hessian cannot be obtained by a simple update of the previous
approximation. Second, an additional sparse linear system (2.6) must be solved in order to
compute the update. Finally, it is not possible in general to achieve the property of hereditary
positive-definiteness in the matrices {H,%} if the quasi-Newton condition is satisfied (see Toint,

* 1979, and Sorensen, 1982); in fact, positive-definiteness may not be retained even if H is taken
as the exact (positive definite) Hessian and the initial zt is very close to the solution (see Thapa,

• 1980).
In addition to these theoretical difficultics, computational results have tended to indicate that

currently available sparse quasi-Newton methods are len effective than alternative methods (in
terms of the number of function evaluations required for convergence). However, hope remains
that their emfciency may be improved - for example, by relaxing the quasi-Newton condition
(2.3), or by finding only an approximate solution of (2.6) (Steihaug, 1982). For a discussion of
some possible new approaches, see Sorensen (1982).

2.4. Co9Jngtepa lkt methods. The term conjugate-gradient refers to a class of optimization
algorithms that generate directions of search without storing a matrix. They are essential in
circumstances when methods based on matrix factorisation are not viable because the relevant
matrix is too large or too dense. We emphasize that there are two types of conjugate-gradient
method - linear and nonlinear.



e Spase Matrix Methods in Optimiation

The linear conjugate-gradient method was originally derived as an iterative procedure for
solving positive-definite symmetric systems of linear equations (Hestenes and Stiefel, 1952). It
has been studied and analyzed by many authors (see, e.g., Reid, 1971). When applied to the
positive-definite symmetric linear system

Hz = -c, (2.7)

it computes a sequence of 'iterates using the relation (1.1). The vector ph is defined by

pI, = -(Hzt + c) + Ph-P,--i, (2.8)

and the step length a, is given by an explicit formula. The matrix H need not be stored explicitly,
since it appears only in matrix-vector products.

With exact arithmetic, the linear conjugate-gradient algorithm will compute the solution of
(2.7) in at most m (m <_ n) iterations, where m is the number of distinct eigenvalues of H.
Therefore, the number of iterations required should be significantly reduced if the original system

,,... can be replaced by an equivalent system in which the matrix has clustered eigenvalues. The idea
of preconditioning is to construct a transformation to have this effect on H. One of the earliest
references to preconditioning for linear equations is Axelsson (1974). See Concus, Golub and
O'Leary (1976) for details of various preconditioning methods derived from a slightly different
viewpoint.

The nonlinear conjugate-gradient method is used to minimize a nonlinear function without
storage of any matrices, and was first proposed by Fletcher and Reeves (1964). In the Fletcher-
Reeves algorithm, p,. is defined as in the linear case by (2.8), where the term Hzh + c is replaced
by gh, the gradient at z%. For a nonlinear function, ak in (1.1) must be computed by an iterative
step-length procedure. When the initial vector Po is taken as the negative gradient and ,, is the
step to the minimum of F along pi, it can be shown that each pt is a direction of descent for F.

Many variations and generalizations of the nonlinear conjugate-gradient method have been
proposed. The most notable features of these methods are: 8A is computed using different
definitions; ph is defined as a linear combination of several previous search directions; Po is not
always chosen as the negative gradient; and & is computed with a relaxed linear search (i.e., at
is not necessarily a close approximation to the step to the minimum of F along ps). Furthermore,
the idea of preconditioning may be extended to nonlinear problems by allowing a preconditioning
matrix that varies from iteration to iteration.

It is well known that rounding errors may cause even the linear conjugate-gradient method to
converge very slowly. The nonlinear conjugate-gradient method displays a range of performance
that has not yet been adequately explained. On problems in which the Hessian at the solution
has clustered eigenvalues, a nonlinear conjugate-gradient method will sometimes converge more
quickly than a quasi-Newton method, whereas on other problems the method will break down, i.e.
generate search directions that lead to essentially no progress. For recent surveys of conjugate-
gradient methods, see Gill and Murray (1979), Fletcher (1980) and Hestenes (1980).

2.5. The truncated linear conjugate-gradient method. Much recent interest has been focussed on
an approach to unconstrained optimization in which the equations (2.1) that define the search
direction are "solved' (approximately) by performing a limited number of iterations of the linear
conjugate-gradient method.

Consider the cue in which the exact Hessian is used in (2.1). Dembo, Eisenstat and Steihaug
(1982) note that the local convergence properties of Newton's method depend on ph being an



& Linearly Constrained Optimisation T

accurate solution of (2.1) only near the solution of the unconstrained problem. They present
a criterion that defines the level of accuracy in PA necessary to achieve quadratic convergence
as the solution is approached, and suggest rystematically "truncatine the sequence of linear
conjugate-gradient iterates when solving the linear system (2.1) (hence their name of 'truncated
Newton method!). (See also Dembo and Steihaug, 1980, and Steihaug, 1980.)

This idea has subsequently been applied in a variety of situations - for example, in computing
a search direction from (2.1) when HA is a sparse quasi-Newton approximation (Steihaug, 1982).
We therefore prefer the more specific name of truncated conjugate-gradient methods. These
methods are useful in computing search directions when it is impractical to store HA, but it
is feasible to compute a relatively small number of matrix-vector products involving Hh. For
example, this would occur if HA were the product of several sparse matrices whose product is

* dense (see Section 3.3.1). Truncated conjugate-gradient methods have also been used when the
matrix-vector product H1tv is approximated (say, by a finite-difference along v); in this case,
the computation of PA requires a number of gradient evaluations equal to the number of linear
conjugate-gradient iterations (see, e.g., O'Leary, 1982). In order for these methods to be effective,
it must be possible to compute a good solution of (2.1) in a small number of linear conjugate-

*: gradient iterations, and hence the use of preconditioning is important.
With a truncated conjugate-gradient method, complications arise when the matrix Hk is not

positive definite, since the linear conjugate-gradient method is likely to break down. Various
strategies are possible to ensure that pA is still a well defined descent direction even in the
indefinite case. For example, the conjugate-gradient iterates may be computed using the Lanczos

*: process (Paige and Saunders, 1975); a Cholesky factorization of the resulting tridiagonal matrix
leads to an algorithm that is equivalent to the usual iteration in the positive-definite case. If the

tridiagonal matrix is indefinite, a related positive-definite matrix can be obtained using a modified
Cholesky factorization. Furthermore, preconditioning can be included, in which case the linear
conjugate-gradient iterates begin with the negative gradient transformed by the preconditioning
matrix. If the preconditioning matrix is a good approximation to the Hessian, the iterates should
converge rapidly. Procedures of this type are described in O'Leary (1982), Nash (1982), and Gill
et al. (1983).

Further flexibility remains as to how the result of a truncated conjugate-gradient procedure
may be used within a method for unconstrained optimization. Rather than simply being used as a
search direction, for example, pA may be combined with previous search directions in a nonlinear
conjugate-gradient method (see Nash, 1982, and Gill et al., 1983).

8. Linearly Constrained Optimization

3.1. Introduction. The linearly constrained problem will be formulated as

LCP minimize F(z)

subject to A:=b

where the m X n matrix A is assumed to be large and sparse. For simplicity, we assume that the
rows of A are linearly independent (if not, some of them may be removed without altering the

*i solution).
The most popular methods for linear, s^'str" .4 optimisation are active-set methods, in

which a subset of the constraints (the worr-_. set) is used to define the search direction. The



- Sparse Matrix Methods in Optimisation

working set at zA usually includes constraints that are satisfied exactly at :A; the search direction
is then computed so that movement along P% will continue to satisfy the constraints in the working
set.

With problem LCP, the working set will include the general constraints Az = 6 and some of
the bounds. When a bound is in the working set, the corresponding variable is fixed during that
iteration. Thus, the working set induces a partition of z into fixed and free variables.

We shall not be concerned with details of how the working set is altered, but merely emphasize
that the fixed variables at a given iteration are effectively removed from the problem; the
corresponding components of the search direction will be zero, and thus the columns of A
corresponding to fixed variables may be ignored. Let Ak denote the submatrix of A corresponding
to the free variables at iteration k; each change in the working set corresponds to a change in the
columns of Ak. Let ny denote the number of free variables, and the vector pk denote the search
direction with respect to the free variables only.

By analogy with (2.2) in the unconstrained case, we may choose Pk as the step to the minimum
of a quadratic approximation to F, subject to the requirement of remaining on the constraints in
the working set. This gives pk as the solution of the following quadratic program:

minimize grp + 1 pTHJp

subject to Ahp - 0,

where gA, denotes the gradient and Hh the Hessian (or Hessian approximation) at zL with respect

to the free variables.
The solution Ph and Lagrange multiplier XA of the problem (3.1) satisfy the isv + m equations

(HA )( Pj(h9) (3.2)
As, -X 0

which will b. . alled the augmented system.
One convenient way to represent Ph involves a matrix whose columns form a basis for the

null space of Ah. Such a matrix, which will be denoted by Zh, has nv - m linearly independent
columns and satisfies AZ, = 0. The solution of (3.1) may then be computed by solving the
null-space equations

'4Z HhZhp. = -Z g (3.3)

';.1 and setting

Equations (3.3) and (3.4) define a null-apace representation of Ph (so named because it explicitly
involves Zh). The vector ZtgI and the matrix ZtHZ, are called the projected gradient and
projected Hessian.

L2.. Representation of the nuil space. The issues that arise in representing Z when A; is sparse
illustrate the need to compromise strategies that are standard for dense problems. In the rest of
this section, we shall drop the subscript k associated with the iteration.

In dense problems, it is customary to use an explicit LQ or some other orthogonal factorization
of A in order to define Z. If AQ - (L 0 ), where the orthonormal matrix Q is partitioned
as ( Y Z) and L is lower triangular, then AZ = 0. In this case, Z has the *ideal' property



& Linearly Constrained Optimisation o

that its columns are orthonormal, so that formation of the projected Hessian and gradient does
not exacerbate the condition of (3.3) and (3.4). Unfortunately, for large problems computation of
such a factorization is normally too expensive. (Some current research is concerned with efficient
methods for obtaining sparse orthogonal factorizations; see George and Heath, 1981. However,
the need to update the factors is an even more serious difficulty; see Heath, 1982, and George
and Ng, 1982.)

If an orthogonal factorization is unacceptable, a good alternative is to reduce A to triangular
form using Gaussian elimination (i.e., elementary transformations combined with row and column
interchanges). This would give an LU factorization in the form

PIAP 2 (U W)=(L 0), (3.5)

where P1 and P2 are permutation matrices, U is unit upper triangular, and L is lower triangular.
The matrices P1 and P2 would be chosen to make U well conditioned and IIWII reasonably small.
The required matrix

Z= P2 ( ) (3.6)

would no longer have orthonormal columns, but should be quite well conditioned, even if A if
poorly conditioned.

Unfortunately, it is not known how to update the factorization (3.5) efficiently in the sparse
case when columns of A are altered. However, (3.5) indicates the existence of a square, nonsingular
submatrix drawn from the rows and columns of A. We shall assume for simplicity that this matrix
comprises the left-most columns of A, i.e.

A=(B S), (3.7)

where B is non-singular. (In practice, the columns of B may occur anywhere in A.) It follows
from (3.7) and (3.5) (with P1 and P 2 taken as identity matrices) that BW + S = 0, so that
W = -B- 1S. Thus, Z has the form

z -B- .S(3.8)

- As long as B in (3.7) is nonsingular, the matrix Z (3.8) will provide a basis for the null space of
A. In the absence of the ideal factorization (3.5), the aim must be to choose a B that is as well
conditioned as conveniently possible, since this will tend to limit the size of IiWJi and hence the
condition of Z.

The partition of the columns of A given by (3.7) induces a partition of the free variables,
which will be indicated by the subscripts 'B" and "s". The m variables z. are called the basic
variables. The remaining a free variables (8 nv - m) are called the superbasic variables. For
historical reasons, the fixed variables are sometimes called the nonbasic variables.

An advantage of the form (3.8) for sparse problems is that operations with Z and Z T may
1be performed using a factorization of the matrix B; the matrix Z itself need not be stored. For
* example, the vector ZTg required in (3.3) may be written as

Z r = gig + .. (3.9)



* IS Spare Matrix Methods in Optimization

(The vector on the right-hand side of (3.9) is called the reduced gadient; note that it is simply
" the projected gradient with a particular form of Z.) Thus, ZTg may be obtained by solving

Br. = 9a, and then forming gs - Save. Similarly, to form p = Zp,, we have

which gives the ystem
Bps = -Sp.

With the reduced-gradient form of Z (3.8), the problems of representing a null space and
computing the associated projections reduce to the familiar operations of factorizing and solving
with an appropriate square B.

"" .L SolviMn tr the search direction. At each iteration of an active-set method for LCP, the
search direction p with respect to the free variables solves the subproblem (3.1). We have seen
that there are mathematically equivalent representations of p; the way in which p is computed
for sparse problems depends on several considerations, which will be discussed below.

3..l1. Solving the null-space equations. For sparse problems, it will generally not be possible to
solve (3.3) by explicitly forming and then factorizing ZTHZ. Even if H and B are sparse, the
projected Hessian will generally be dense. Thus, if a factorization of the projected Hessian is to
be stored, the number of superbasic variables at each iteration must be sufficiently small (i.e., the
number of fixed variables must be sufficiently large). Fortunately, for many large-scale problems
there is an a priori upper bound on the number of free variables. For example, if only q of the
variables appear nonlinearly in the objective function, the dimension of the projected Hessian
matrix at the solution cannot exceed q.

Furthermore, even if the dimension of ZTHZ is small, forming the projected Hessian may
involve a substantial amount of work; when Z is defined by (3.8), computation of ZTHZ requires
the solution of 2s systems of size m X m. For this reason, a Newton-type method in which the
projected Hessian is recomputed at each iteration is not generally practical. By contrast, quasi-
Newton methods can be adapted very effectively to sparse problems in which the dimension of the
projected Hessian remains small, by updating a dense Cholesky factorization of a quasi-Newton
approximation to the projected Hesian; this is the method used in the MINOS code of Murtagh
and Saunders (1977, 1980).

When the projected Hessian cannot be formed or factorized, the null-space equations may
be solved using an iterative method that does not require storage of the the matrix, such as a
truncated conjugate-gradient method (see Section 2.5). In order for this approach to be reasonable,
the computation of matrix-vector products involving Z and H must be relatively cheap (e.g, when
H is sparse); in addition, a good approximation to the solution of (3.3) must be obtained in a small
number of iterations. Even when the Hessian is not available, a truncated conjugate-gradient
method may be applied to (3.3) by using a finite-difference of the gradient to approximate the
vector HZv; an evaluation of the gradient is thus necessary for every iteration of the truncated
-onjugate-gradient method. Note that this is one of the few methods in which H is not required
to be sparse. Some experience with a truncated conjugate-gradient approach in this context is
described in Gill, et a., 1983.

each of the above methods for solving the null-space equations can be adapted to allow for
changes in the working set (Section 3.5).

-'- *~. ~ :.. ! *'..2 ~ ~ ...*. .§~ . - 2 .2- . .7 . - . . . . . . .



3. Linearly Constrained Optimination 11

3'.2. Solving the range-space equations. The null-space equations provide one means of solv-
ing for p in the augmented system (3.2), by eliminating Xh. When H is positive definite, a
complementary approach is to solve for X first, via the range-space equations

AH-ATX = At-'9,

Hp = ATX - g.

This method would be appropriate if H were sparse, and if A had relatively few rows. The
application of a range-space approach to quadratic programming is discussed by Gill et al. (1982).

3.3.L Solving the augmented system. An alternative method for obtaining p involves treating
the augmented system directly. (Variations of this idea have been proposed by numerous authors;
see, e.g., Bartels, Golub and Saunders, 1970). The most obvious way to solve (3.2) is to apply a
method for symmetric indefinite systems, such as the Harwell code MA27 (Duff and Reid, 1982).
In order for the solution of (3.2) to be meaningful, the matrix ZTHZ must be positive definite.
Verifying positive-definiteness in this situation is a nontrivial task, since of course the matrix
ZTHZ is not computed explicitly. However, the result may sometimes be known a priori - for
example, when H itself is positive-definite.

Both H and A change dimension when the working set is altered. Updating procedures for
this case are discussed in Section 3.6.2.

3.4. Factorizing and solving a square system. The linear systems involving B and BT are typically
solved today using a sparse LU factorization of B. Surveys of techniques for computing such
a factorization are given in Duff (1982) and Duff and Reid (1983). The analyse phase of a
factorization consists of an analysis of the sparsity pattern alone (independent of the values of
the elements), and leads to a permutation of the matrix in order to reduce fill-in during the
factorization. The factor phase consists of computation with the actual numerical elements of
the matrix.

We shall mention a few features of certain factorization methods that have particular relevance
.. to optimization (see Duff and Reid, 1983, for more details). Since active-set algorithms include

a sequence of matrices that undergo column changes, the factorization methods were typically
developed to be used in conjunction with an update procedure.

The P4 algorithm of Hellerman and Rarick (1971, 1972) performs the analyze phase separately
from the factor phase, and produces the well known "bump and spike" structure, in which

*.'- B is permuted to block lower-triangular form with relatively few "spikes' (columns containing
- nonzeros above the diagonal). This procedure is very effective if B is nearly triangular. Also, the

factor phase is able to use external storage, since it processes B one column at a time. Column
interchanges are used to stabilize the factorization. (Row interchanges would destroy the sparsity
pattern.) If an interchange is needed at the i-th stage, it is necessary to solve a system of the
form LT-ly = ei and to compute the quantities VTaj for all remaining eligible spike columns aj.

• .This involves significant work and also degrades the sparsity of the factors. Thus, a rather loose
pivot tolerance must be used to avoid many column interchanges (e.g., II <5 104, where A is the
largest subdiagonal element in any column of L divided by the corresponding diagonal).

The Markowits algorithm (Markowits, 1957), on the other hand, performs the analyse and
factor phases simultaneously, and hence must run in main memory. It computes dynamic *merit

" counts" in order to determine the row and column permutations to preserve sparsity and yet
retain numerical stability. The Markowits procedure can achieve a good sparse factorization even
with a rather strict pivot tolerance (e.g., 1#1 1 0).



12 Spare Ma Method in Opimiatie

Table 1

Summay of Problem Characteristics

Stair I Stair 2 Star 3 OPF I OP 2

B rows 3ST 745 1170 1200 3400

B Bos 8500 M00 7100 9000 29000

P4 blocks 1 5 13 1

P4 spikes 66 101 157 TS

Table 2

Number of Nonseros in initial LU factorlsation and after k updates

Stair I Star 2 Stair OPF 1 OPF 2

LOUo with P4 (MINOS) 6400 16200 32000 30400 -

LoUo with Markowits (LAOS) 5400 4700 13500 13800 75000

k 50 50 so 30 40

LrUh with LAOS T00 6000 17100 15300 83000

In order to indicate how these factor routines perform on matrices that arise in optimization,
we give results on five test problems. In the first three problems, the matrix B has 'staircase
structure (see, e.g., Fourer, 1982); constraints of this form often arise in the modeling of dynamic
systems, in which a set of activities is replicated over several time periods. The fourth and fifth
problems wrise from the optimal power flow (OPF) problem (see, e.g., Stott, Alsac and Marinho,
1980). In this case, B is the Jacobian of the network equations of the power system, and has a
symmetric sparsity pattern (which is not at all triangular) Table I shows some of the relevant
features of the problems described, including the results of factorisation with the P4 algorithm.

The number of nonzeros in the initial LU factorization of B is shown in the first two rows
of Table 2. The P4 algorithm is as implemented in the MINOS code of Murtagh and Saunders

re 5



a Linearly Constrained Opthmisagoa 13

(1977, 1980); the Markowitz procedure is the Harwell code LAOS (Reid, 1976, 1982). Note that
the large number of spikes in the first OFF problem is bound to cause difficulties for the P4
algorithm.

8.5. Column updates

For problems of the form LCP, each change in the working set involves changing the status of

a variable from fixed to free (or vice versa). When a previously fixed variable becomes freed, aI column of A is added to A; this poses no particular difficulty, since the new column can simply
be appended to S. When a free variable is to become fixed, a column of A must be deleted,
and complications arise if the column is in B. Since the number of columns in B must remain
constant (in order for B to be nonsingular), it is necessary to replace a column of B with one of
the columns of S.

Assume that we are given an initial Bo, which thereafter undergoes a sequence of column
replacements, each corresponding to one of the free variables becoming fixed on a bound. Let IA
denote the index of the column to be replaced at the k-th step, ak denote the lk-th column of B,

vk denote the new column, and e, denote the 1-th column of the identity matrix. After each
replacement, we have

B, = BA;, + (v,% - a,)ej. (3.10)

We shall consider several ways in which systems of equations involving B% can be solved following
a sequence of such changes.

3.5.1. The product-fom update. The standard updating technique used in all early sparse LP
codes was the product-form (PF) update (e.g., Dantsig and Orchard-Hays, 1954). It follows from
the definition of BA that

Bk = BA;-lTA,

where
BA-V = vik and Th = I + (VA - ei.)eI. (3.11)

Note that T; is a permuted triangular matrix (with only one nontrivial column); equivalently, T%
is a rank-one modification of the identity matrix. The matrix Tk can be represented by storing

* the index l and the vector V%.
After k such updates we have

B, =BoTIT2... Ta. (3.12)

Given a procedure to solve systems of equations involving Bo, (3.12) indicates that solving Batv =

b is equivalent to solving the k + 1 linear systems

Boo = Tiv 1=VO, ... , Tkuh =vai, (3.13)

*-; where the systems involving Tj are easy to solve. As k increases, the solution process becomes
progressively more protracted, and the storage required to store the updates is strictly increasing.
Therefore it becomes worthwhile to compute a factorisation of Bk from scratch. Most current
systems use an initial triangular factorisation Bo = LoUo (see Section 3.4), and recompute the

-* factorisation after k updates (typically k < 50).
The PF update has two important advantages for sparse problems. First, the vectors {vj}

may be stored in a single sequential file, so that implementation is straightforward. Second, any

---------------------------------



14 up.n Matrix Methods in Optmstion

advance in the methods for linear equations is immediately applicable to the factorization of Bo,
sin the update does not alter the initial factorization. Thus, Bo may be represented by a 'black
boe" procedure for solving equations (involving both Bo and 4or).

Unfortunately, the PF update has two significant deficiencies. It is numerically unreliable if
Jefly, is too small (since T,. is then W-conditioned), and the growth of data defining the updates
is significantly greater than for alternative schemes.

U..2. The Butela.Gsohb update. The instability of the PF update was first made prominent
by Bartels and Golub (1969), who showed as an alternative that an LU factorisation can be
updated in a stable manner (see also Bartels, Golub and Saunders, 1970; Bartels, 1971). Given
an initial factorization Be = LoUo, the updates to L are represented in product form, but the
sparse triangular matrix U is stored (and updated) explicitly. Thus, instead of the form (3.12)
we have

B, = LoTT 2  TqU =-- LU, (3.14)

where each T represents an update whose construction will be discussed below.
At the k-th step, replacing the L,%-th column of B,-1 gives

B,. =

where 0 is identical to U,%-, except for its l,%-th column. Since U- 1 is stored as a sparse matrix,
it is desirable to restore U to upper-triangular form U without causing substantial fill-in. To
this end, let P denote a, .c permutation that moves the L,-th row and column of U to the end,
and shifts the intervening rows and columns forward. We then have

'prop

The nonseros in the bottom row of PrUP may be eliminated by adding multiples of the other
rows. However, it follows from the usual error analysis of Gaussian elimination (e.g., Wilkinson,
1965) that this procedure will not be numerically stable unless the size of the multiple is bounded
in some way. Hence, we must allow the last row to be interchanged with some other row.
Formally, the row operations are stabilized elementary transformations (Wilkinson, 1965), which
are constructed from 2 X 2 matrices of the form

M ' (3.15
M=(G 1) or =(, . (3.15)

(Note that the transformation ff includes a row interchange.) Each such transformation is
represented by the scalar p, and is unncessary if the element to be eliminated is already zero.
Numerical stability is achieved by choosing between M and M so that the multiplier p is bounded
in sise by some moderate number (e.g., 1/at 1, 10 or 100). The matrices {T 1) in (3.14) are
constructed from sequences of matrices of the form (3.15).

....!...



. Linearly Conatrined Optimisation 15I

Unfortunately, elimination of the nonseros is *easier said than done* in the sparse case. Any
transformation of type Af amounts to a form of fill-in, since the location of nonseros in the
interchanged rows is unlikely to be the same. A complex data structure is therefore needed to
update U1, without losing efficiency during subsequent solves. (Holding individual nonseros in a
linked list, for example, would not be acceptable in a virtual-memory environment.)

The implementation of the BG update by Saunders (1976) capitalizes on the 'bump and
'4' spike" structure revealed by the P' procedure (see Section 3.4). Each triangular factor is of the

formI U&=( I )k
and fill-in can occur only within F%. If U0 contains a spikes, the dimension of Ft will be at most
s + k. Storing F% as a dense matrix allows the BG update to be implemented with maximum
stability (I/#1 1 in (3.15)), and the approach is efficient as long as a is not unduly large (say,
a < 100). This implementation has been used for several years in the nonlinear programming

: system MINOS (Murtagh and Saunders, 1977, 1980). During that period, the number of spikes
in U0 has proved to be favorably small for many sparse optimization models. However, two
important applications are now known to give unacceptably large numbers of spikes: time-period
models (for which B has a staircase structure) and optimal power-flow problems (for which B has
a symmetric sparsity pattern). Some statistics for these problems are given in Table 1 (Section
3.4).

Another implementation of the BG update has been developed by Reid (1976, 1982) as the
Fortran package LAO5 in the Harwell Subroutine Library. It strikes a compromise between dense
and linked-list storage by using a whole row or column of Uh as the 'unit' of storage. Thus, the
nonseros in any one row of U are held in contiguous locations of memory, as are the corresponding
column indices, and an ordered list points to the beginning of each row. To facilitate searching, a
similar data structure is used to hold just the sparsity pattern of each column (i.e., the row indices
are stored, but not the nonzeros themselves). This storage scheme is also suitable for computing

:1. an initial LU factorization using the Markowits criterion and threshold pivoting - a combination
that has been eminently successful in practice, particularly on the structures mentioned above.
Table 2 (Section 3.4) shows the small increase in the number of nonseros using LAOS.

We note that in the context of column updating, the stability test in the initial factorisation
should ideally be performed along the columns of Lo, rather than along the rows of U0 as in
the existing LAOS, in order to ensure that Lo in (3.14) is well conditioned. (This is necessary to
achieve the following desirable property: the factorization of B h is likely to be well conditioned
if Bt is well conditioned, even if Bo is not.) For efficiency the data structure for computing U0
then needs to be transposed. This and other improvements will be incorporated in a new version
of LA05 (Reid, private communication).

In the meantime, the sparsity properties of LAOS are unsurpassed, and the numerical properties
are excellent as long as Be is not extremely ill-conditioned. The package should therefore find
increasingly widespread application.

S8.5.. The Forreut-Tomlin update. The update of Forrest and Tomlin (1972) was developed as a
means of improving upon the sparsity of the PF update while retaining the ability to use external

*: storage where necessary. In fact the FT update is a restricted form of the BG update, in which no
row interchanges are allowed when eliminating the bottom row of P 1JP. This single difference
removes the fill-in difficulty (but at the expense of losing guaranteed numerical stability).

Algebraically, a new column w,% is added to U-I, the IA,-th column and row are deleted, and
the transformations M are combined into a single =row" transformation RA , I +- e.(rt - el.)2 .



;-,

16 sparse Matrix Methods in Optinisaion

It can be shown that the required vectors satisfy

L;lk= vt,, an U....rk =ell, (3.18)

and the new diagonal of Ut is rh,. Most importantly, the multipliers are closely related to the
elements of rA, and these can be tested a posteiori to determine whether the update is acceptable
(see also Tomlin, 1975). In practice a rather undemanding test such as 1p1 < 106 must be used to
avoid rejecting the update too frequently. The FT update is now used within several commercial
mathematical programming systems.

3.5.4. Use othe Schur complement. The work of Bisschop and Meeraus (1977, 1980) has recently
provided a new perspective on the problem of updating within active-set methods. Suppose that
for each update a vector vi replaces the Ij-th column of Bo. A key observation is that the system
Bkz = b is equivalent to the system

Bo 11U=11, (3.17)

where
V =(l ts2 ' .-. Vk), It ell e, el,

Note that the rectangular matrix It is composed of k rows of the identity matrix corresponding
to indices of columns that have been replaced. Since the equations I, V = 0 set k elements of y
to zero, the remaining elements of V and z together give the required solution z. Similarly, the
system BST = d is equivalent to

if d, and d2 are constructed from d appropriately (with the aid of ks arbitrary elements, such as
zero).

The matrix in (3.17) may be factorized in several different ways. In the next two sections we
consider the simplest factorization(Bo V )(Bo C)(

Bo VA,)=(" Cko YA; (3.19)
Ark Ark CI

where
BOY , = V,

CA = -I&Y,. (3.20)

The k X k matrix C% is the Schur complement for the partitioned matrix on the left-hand side
of (3.19). It corresponds to a matrix of the ubiquitous form D - WB-V (e.g., see Cottle, 1974).

3.5.. A stablsed p.duet-fbem update. From (3.17) and (3.19) we see that the vectors V and x
*needed to construct the solution of Btz: b may be obtained from the equations

Bs , (3.21a)

= = -W, (3.21b)

. . .. . ... .. - Y'... (3.21c)



, , _ . . .- ,:, . . VW ..., r , . U., ... -.. . -, . ,.... . -ip. . -i . ----. "-.'o "."°

a. Lianrl Cotstrained OptimiUaio iT

Similarly, the solution of Bhy = d is obtained from the two linear systems

Co = d, - (3.22.)

Assuming that Y,. is available, the essential operations in (3.21) and (3.22) are a solve with Bo
and a solve with Ct. If k is small enough (say, k < 100), CA; may be treated as a dense matrix.
It is then straightforward to use an orthogonal factorisation Q.Ct = RH (QhQ, = I, R, upper
triangular) or an analogous factorization LtCt = U,. based on Gaussian elimination (Lt square,
UA upper triangular). These factorisations can be maintained in a stable manner as C, is updated
to reflect changes to B,%. (The updates involve adding and deleting rows and columns of Ct; see
Gill et al., 1974.) The stability of the procedures (3.21) and (3.22) then depends essentially on
the condition of BO. In other words, if B0 is well conditioned, we have a stable method for solving
Bz = b for many subsequent k.

This method retains several advantages of the PF update. The vectors to be stored (columns
of Y) satisfy Boyi, = v%, which is analogous to (3.11). These vectors should have sparsity
similar to those in the PF update, and they can be stored sequentially (in compact form on an
external file, if necessary). A further advantage is that whenever a column of Ck is deleted, the
corresponding vector Vt may be skipped in subsequent uses of (3.21c). This gain would tend to
offset the work involved in maintaining the factors of C.. Because of the parallels, the method
described here amounts to a practical mechanism for stabilizing an implementation based on the
PF update.

3.5.6. The Schur-complement update. One of the aims of Bitschop and Meeraus (197, 1980) was
to give an update procedure whose storage requirements were independent of the dimension of
B0 . This is achievable because the matrix Y,. is not essential for solving (3.17) and (3.18), given
V and a 'black box" for B0 . For example, (3.21c) may be replaced by

Boy= b- Viz, (3.23),

and hence storage for Yt can be saved at the expense of an additional solve with B0. Similarly,
(3.22a) is equivalent to

Borw = di,

CTz= d2- ts
again involving a second solve with B. Note that the original data V, will usually be more sparse
than Y, so that the additional expense may not be substantial.

The storage required for a dense orthogonal factorisation of C, (10c) is small for moderate
*values of k. As with the PF update, any advance in solving linear equations is immediately

applicable to the equations involving Bo.
The method is particularly attractive when Bo has special structure. For example, certain

linear programs have the following form:

minimise cra

js subject to (Bo N)z = b
I



-. ~~~~. ; -I 'Q- -u- . - r:~-~---

13x8 Sparn Atrix Method. in Optimsatio

* ,where Be is a square block-diagonal matrix:

Bo = block-dig( Do Dl*"" DN ).

Assuming that the square matrices Dj are well conditioned, Do provides a natural starting basis
for the simplex method.

With the Schur-complement (SC) update, an iteration of the simplex method on such a
problem requires four solves with Bo, and hence four solves with each matrix Dj. In certain
applications, the matrices Dj are closely related to Do (e.g., in time-dependent problems), in
which case a further application of the Schur-complement technique would be appropriate. A
simplex iteration then involves only solves with Do.

This is a situation in which one factorization is followed by hundreds or even thousands of
solves (involving both Do and DO). Thus, it is useful for black-box solvers to be tuned to the
case of multiple right-hand sides.

L.5.7. The partitioned LU update. Recall that the PF approach accumulates updates in a
single file, while the BG and FT methods seek to reduce the storage required for the updates by
updating two separate factors (one implicitly through a file of updates, the other explicitly). Here
we suggest leaving L and Uo unaltereO (in effect, treating them as two 'black boxes' for solving
linear systems), and accumulating two files of updates. In place of the block factorisation (3.19)
we can write

k V )(L X UO 7) (3.24)

with the same definition (3.20) of Ca. After the k-th update, the new column of W and row of
R,% satisfy

Lowi = Vt and UOrj = el.. (3.25)

The similarity of (3.25) with the equations (3.16) for the FT update leads us to suppose that the
storage requirements would be at least as low as for the FT update. Apart from the need to store

and update Ca, all implementation advantages are retained (in fact improved upon, since Uo is
not altered). As with the PF and SC updates, the stability depends primarily on the condition
of Bo. We could therefore regard the factorization (3.24) as a practical and stable alternative to
the FT update.

3.5.L Avoiding access to Bo. In active-set methods, it is often necessary to solve the equations
Btz = v, where v is a column of the matrix A. Although v will not be a column of BA;, it could
be a column of Bo. If Bo were not stored in main memory, it would be desirable to access its
columns as seldom as possible. In this section we shall show that with the PF update or the
Schur-complement updates, the elements of B0 need not be accessed once the initial factorization
has been compleed.

Assume that e is the I-th column of Bo, so that v = Boe, by definition. For the PF update
it follows by substituting the expression for v in (3.13) that

T... T Tk = 61,,

which gives an equation for z that does not involve u or ao. With the Schur-complement approach,
(8.21s) reduces to w = el, while (3.23) can be rearranged to give Bo(V - e) = -V,. In either
Case, when solving for x we can avoid not only an explicit reference to the elements of Do but
also a solve with Do.

,'.-, .-- - ,-, , -, ,- ,- .-. ,-,--,-,. ,- • •.- , ... - " -. . - . . . .



L
- L  
j._ ._ . . . . ...-; .. .'-. ~ .. . . *- .. .':--.'r-.- . : _ ' . _ . " -. --. ."- -,-.' -_- " --' - . - - - - -.'

I Unearly Constrained Optimisation 19

Similarly, it is often necessary to solve BTy - d and then to form 7j - yTvj for each column
vi that has been replaced in B0 . (The quantities yi are the reduced costs or reduced gradients
for variables that have been removed from B0.) If t denotes the product BoTV, then by definition
of vj it follows that yTvj = tTeag. With both the PF and the Schur-complement updates, t is a
by-product of the procedure for computing y. Thus, t and all relevant values 'Vi are available at
no cost.

These results confirm that B0 need exist only in the form of a "black box3 for solving linear
systems.

3.6. Other applications of the Schm.¢omplement update. Historically, the formulation LCP
has been used because it involves only column updates to B,, which have appeared to be the
least difficult kind of update to implement for sparse problems. However, the Schur-complement
approach also applies to more general sequences of related square systems. As with column

* replacement, the key idea is to solve a partitioned system that involves the original matrix.

3.6.1. Unsymmetrlc rank-one updates. Consider the case in which Bo undergoes a sequence of
rank-one modifications:

Bk = Bkl + k.=O- Bo + V S.

* The solution of Bkz b 6 is part of the solution of the extended system

(B V&)( z)(b) (3.26)
.:""ST -I Z 0

(Kron, 1956; Bisschop and Meeraus, 1977). Given factorizations of Bo and the Schur complement

. Ck = -I - STBi'1 V, the solution may be obtained from

at -Sitw,
o= - Vz,

where Bow = b. An alternative that would require more storage but less work could be obtained
by using B0 = LoUo and storing the vectors defined by LotwA = v%, Ur'rt = sh. Let RA denote
the matrix whose "-th column is r, and similarly for WA;. In this case, the solution of (3.26)
would be obtained from

C-.z = -Rv
U0Z = V- wx

where Lov = b. Either approach is an alternative to updating a factorisation of Bt itself (e.g.,
Gille and Loute, 1981, 1982), which is even more difficult to implement than the BG update.

We emphasise that column or row replacements are best treated as a special case, not as a
sequence of general rank-one modifications.

3.62. A symmetric Schur-eomplement update. It was observed in Section 3.1 that in some
circumstances the search direction can be computed by solving the linear system (3.2) involving
the augmented matrix

M% (j Ar) (3.2T)Ah

Within an active-set method, changes in the status of fixed and free variables lead to changes in
H and A. When a variable becomes fixed, the corresponding row and column of M% are deleted;
when a variable is freed, a new row and column of Mt are added.



20 Spar.. Matrix Methods in Optimisation

Instead of updating a factorization of Mp , we can start with some Me and work with an

augmented system of the form

If a variable is fixed at the k-th change, the k-th column of S% is an appropriate coordinate vector;

if the 1-th variable is freed, the column is

where h, is obtained from the 1-th column of the full Hessian, and a, is the 1-th column of A. The
solution of the augmented system corresponding to the k-th working set can then be obtained

' using a factorization of Mo and a factorization of the Schur complement CA; = -STMO-S,.

T.7. Linear and qadric programming. Two important special caes of LCP ae linear and
quadratic programs. Since there are no user-supplied functions, the computation in linear and
quadratic programming methods involves primarily linear algebraic operations.

.7.1. Large-scale lnear programming. Large-scale linear programs occur in many important
applications, such as economic planning and resource allocation. Methods and software for large-
scale LP have thus achieved a high level of sophistication, and many of the techniques discussed

.*. in Section 3 were designed originally for use within the simplex method.
"* Much research has involved linear programs with special structure in the constraint matrix -

for example, those arising from networks or time-dependent systems. It is impossible to summarize
methods for specially-structured linear programs in a survey paper of this type. However, to
illustrate the flavor of the work, we consider staircase linear programs (which were used in the
examples of Section 3.4). These arise in modeling time-dependent processes; the recent book
edited by Dantsig, Dempster and Kallio (1981) is entirely devoted to such problems. It has long
been observed that the simplex method tends to be less efficient on staircase problems than on
general LPs. To correct this deficiency, work has tended to proceed in two directions. First, the
simplex method can be adapted to take advantage of the staircase structure, by using special
techniques for factorizing, updating, and pricing (Fourer, 1982). Second, special-purpose methods
can be designed to exploit particular features of the problem. For staircase problems, several
variations of the decomposition approach (Dantsig and Wolfe, 1960) have been suggested. The
basic idea is to solve the the problem in terms of smaller, nearly independent, subproblems.

37.2. Large-scale quadratic programmlng A general statement of the quadratic programming
problem is

minimize c: + !zrHz
:sel 2

subject to Ax=b

1: <2 U,

* where H is a symmetric matrix.
An early approach to quadratic programming was to transform the problem into a linear

program, which is then solved by a modified LP method (e.g., Beale, 1967). The most popular
quadratic programming algorithms are now based on the active-set approach described in Section
3.1 (for a comprehensive survey of QP methods, see Cottle and Djang, 1979), and the search
direction is defined by the subproblem (3.1). Efficient methods for sparse quadratic programs
thus involve specializing the techniques discussed in Section 3.3 for the special case when the
Hessian is constant.



* Nonlinea Constlned Opinsatim 21

4. NewliIure Ceowtuehe Optimzetba
The nonlinearly constrained optimization problem Is assumed to be of the following form:

NCP minimile F(x)

subject to c(z) = 0

where e(z) is a vector of m nonlinear constraint functions. We shall assume that these constraints
are sparse', in the sense that the m X n Jacobian matrix A(s) of c(s) is sparse. For simplicity,
we shall usually not distinguish between linear and nonlinear constraints in c(s). However, it is
usually considered desirable to treat linear and nonlinear constraints separately.

Problems with nonlinear constraints are considerably more difficult to solve than those with
only linear constraints. There is an enormous literature concerning methods for nonlinear con-
straints; recent overviews are given in Fletcher (1981) and Gill, Murray and Wright (1981). In this
section, we shall concentrate on the impact of sparsity rather than attempt a thorough discussion
of the methods.

One aspect of NCP that is directly relevant to sparse matrix techniques is that any super-
linearly convergent algorithm must consider the curvature of the nonlinear constraint functions,
and thus the Hessian of interest is the Hessian of the Lagrangian function rather than the Hessian
of F alone. Let the Hessian of the Lagrangian function be denoted by W(z, X) - H(z) -
XE'l XHi(z), where Hi is the Hessian of ci. At first, it might appear unlikely that this matrix
would be sparse, since it is a weighted sum of the Hessians of the objective function and the
constraints. However, sparsity in the gradient of a nonlinear constraint always implies sparuity
in its Hessian matrix. For example, if the gradient of ci(z) contains Ave nonsero components,
the corresponding Hessian matrix H(s) can have at most 25 nonzero elements. Furthermore,
there is often considerable overlap in the positions of nonzero elements in the Hessians of different
constraints. Thus, in practice the Hessian of the Lagranean function is often verY sparse.

The usual approach to solving NCP is to construct a sequence of unconstrained or linearly
constrained subproblems whose solutions converge to that of NCP. Early methods included
unconstrained subproblems based on penalty and barrier functions (see Fiacco and McCormick,
1968). Unfortunately, these methods suffer from inevitable ill-conditioning; they have for the

* most part been superseded by more efficient methods.

4.1. Augmeated Lagranglan metds Augmented Lagranglan methods were motivated in larg
part by the availability of good methods for unconstrained optimization. The original idea was
to minimize an approximation to the Lagranglan function that has been suitably augmented (by
a penalty term) so that the solution is a local unconstrained minimum of the augmented function
(Hestenes, 1969; Powell, 1969).

In particular, an augmented Lagranglan method can be defined in which xk+l is takmn as
the solution of the subproblem

m m linse A X Xh Pk•mi L)(4.1)

subject to 9 _ z : v,
where the augmented Lepaaglan function LA is defined by

L.A:, ) =- F(s)- T4,(_) + 19(S)Tc(X). (4.2)



a ~~ - a - . . . . . . .. .. .-

'22 Spar" Matriz Mehods in Optimisation

The vector kh is an estimate of the Lagrange multiplier vector, and p% is a suitably chosen non-
negative scalar. Alternatively, it is possible to treat any general linear constraints by an active-set
method (Section 3.1), and to include only nonlinear constraints in the augmented Lagrangian
function. Whatever the definition of the subproblem, the algorithm ha, a two-level structure -
"outer* iterations (corresponding to different subproblems) and "inner iterations (within each
subproblem).

The Hessian of interest when solving (4.1) is the Hessian of LA (4.2), which is W(s, Xk)
p&A(x)TA(z). If the only constant elements of the Jacobian matrix are zero, the sparsity patterns
of W(x, X) and the Hessian matrix of LA are generally identical. Hence, techniques designed to
use an explicit sparse Hessian may be applied to (4.1).

The Jacobian matrix A(z) need not be stored explicitly in order to solve the subproblem (4.1).
If a fairly accurate solution of (4.1) is computed, an improved Lagrange multiplier estimate may be
obtained without solving any linear systems involving A(z). However, in several recent augmented
Lagrangian methods, (4.1) is solved only to low accuracy in order to avoid expending function
evaluations when XA is a poor estimate of the optimal multipliers; in this case, some factorization
of the matrix A(zsk+) is required to obtain an improved Lagrange multiplier estimate (by solving

*: either a linear system or a linear least-squares problem). The relevance of the storage needed for
the Jacobian and/or a factorisation depends on the number of nonlinear constraints and the
sparsity of the Jacobian.

4.2. Linearly eonstralned subproblems. The solution of NCP is a minimum of the Lagrangian
function in the subspace defined by the gradients of the active constraints. This property leads to
a class of methods in which linearizations of the nonlinear constraints are used to define a linearly
conastrained subproblem, of the form

minimise F(z) - X,(c(z)- A z)
subject to Ak(x - z,) = -ck (4.3)

I < Z < U

where cA; and A, denote e(zA) and A(zA) (Robinson, 1972; Rosen and Kreuser, 1972). With this
formulation, the Lagrange multipliers of the k-th subproblem may be taken as the multiplier
estimate X,+, in defining the next subproblem, and will converge to the true multipliers at the
solution. When c(z) contains both linear and nonlinear functions, only the nonlinear functions
need be included in the objective function of (4.3). Under suitable assumptions, the solutions of the
subproblems converge quadratically to the solution of NCP. A further benefit of the subproblem
(4.3) is that linear constraints may be treated explicitly.

One of the important conditions for convergence with the subproblems (4.3) is a 'sufficiently
close" starting point; thus, some procedure must be used to prevent divergence from a poor value
of so. Rosen (1980) suggested a two-phase approach, starting with a penalty function method.
In the MINOS/AUGMENTED system of Murtagh and Saunders (1982), the objective function of
the subproblem is defined as a modified augmented Lagrangian of the form

L(s, X>1 , Ph) F(z)- )Xrl(z) + L Es,)%(z), (4.4)

where
ff(i) =(z) -(et + A( -- A))



4. Nonlinearly Conisrained Optimisston 2

The sparsity pattern of LA is identical to that of W(z, )), irrespective of any nonzero constant
elements in the Jacobian matrix.

Methods based on solving (4.3) have several benefits for sparse problems. The ability to
treat linear constraints explicitly is helpful for the many large problems in which most of the
constraints are linear. As noted in the Introduction, it is often a feature of sparse problems
that the cost of evaluating the problem functions is dominated by the sparse matrix operations.
The superiority of SQP methods (Section 4.3.2) for dense problems results from the generally
lower number of function evaluations compared to methods based on (4.3); for sparse problems,
however, the function evaluations required to solve (4.3) may be insignificant compared to the

. savings that would result from solving fewer subproblems. If an active-set method of the type
described in Section 3.3.1 is applied to (4.3), only the projected Hessian needs to be stored (rather
than the full Hessian). Thus, methods based on (4.3) will tend to be more effective than augmented
Lagrangian methods for problems in which the Hessian of the Lagrangian function is not sparse
and the projected Hessian can be stored as a dense matrix.

4.3. Methods based on linear and quadratic programming. We now consider two classes of

methods in which the subproblems are solved without evaluation of the problem functions (in
contrast to the methods of Sections 4.1 and 4.2).

4.1. Sequential linear programming methods. Because of the availability and high quality of
software for sparse linear programs, a popular technique for solving large-scale problems has been
to choose each iterate as the solution of an LP subproblem; we shall call these sequential linear
programming (SLP) methods. They were first proposed by Griffith and Stewart (1961); for a
recent survey, see Palacios-Gomes, Lasdon and Engquist (1982).

One crucial issue in an SLP method is the definition of the linear functions in the subproblem.
A typical formulation is

minimise gr(z - zk)
Sea"

subject to A -(z-%) = -ct
S< X<u.

With some formulations, the LP may not be well posed - for example, there may be fewer
constraints than variables. The usual way of ensuring a correctly posed subproblem is to include
additional constraints on the variables, such as bounds on the change in each variable. In general,
the latter are also needed to ensure convergence.
of SLP methods have the advantage that the subproblems can be solved using all the technology

"of sparse LP codes. They tend to be efficient on two types of problems: those with nearly linear
functions, particularly slightly perturbed linear programs; and those in which the functions can
be closely approximated by piecewise linear functions (e.g., the objective function is separable and
convex). Unfortunately, on general problems SLP methods are at best linearly convergent unless
the number of active constraints at the solution is equal to the number of variables. Furthermore,

*the speed of convergence critically depends on the technique that defines each subproblem.
Recently, some of the techniques used in SQP methods (Section 4.3.2) have been applied to

the SLP approach - such as the use of a merit function to ensure progress after each outer
S.. iteration. Such techniques cannot be expected to improve the asymptotic rate of convergence of

SLP methods, but they should improve robustness and overall effectiveness.

- .*" .,.-.,-.,.-- .", ..- - .. . .',,' .- . . * . . .:'. . * " - . - -,; -. -. -.-.-. , .-.. . -,



S4 Sparse Matrix Methods in Optimization

Beals (1978) has given a method that is designed to make extensive use of an existing LP
system. The nonlinearly constrained problem is assumed to be of the form

minimize c(z)Tv

subject to A(z)V = b(z) (4.5)

A special nonlinear algorithm is then used to adjust z; for each value of z, a new estimate V is
determined by solving an LP.

4.3.2. Sequential quadratic programming methods. The most popular methods in recent years for
dense nonlinearly constrained problems are based on solving a sequence of quadratic programming
subproblems (see Powell, 1982, for a survey). At iteration k, a typical QP subproblem has the
form

minimize pTHIp + gTp

subject to Ahp -- k

. - < U - sk,

where H& is an approximation to the Hessian of the Lagrangian function. The solution of the
QP subproblem is then used as the search direction p, in (1.1). The step ak is chosen to achieve
a suitable reduction in some merit function that measures progress toward the solution. In the
dense case, the most popular method is based on taking HA; as a positive-definite quasi-Newton
approximation to the Hessian (Powell, 1977). However, the many options in defining the QP
subproblem have yet to be fully understood and resolved (see Murray and Wright, 1982, for a
discussion of some of the critical issues).

Further complex issues are raised when applying an SQP method to sparse problems (see, e.g.,
Gill et al., 1981). The general development of methods has been hampered because methods for
sparse quadratic programming are only just being developed, and are not yet generally available
for use within a general nonlinear algorithm. However, Escudero (1980) has reported some success
with an SQP implementation in which a sparse quasi-Newton approximation is used for H (see
also Section 3.7.2).

.................



Referencom 25

*.. Reutreues

Abadie, J. and Carpentier, J. (1969). "Generalization of the Wolfe reduced-gradient method to
the case of nonlinear constraints', in Optimization (R. Fletcher, ed.), pp. 37-49, Academic
Press, London and New York.

Axelsson, 0. (1974). On preconditioning and convergence acceleration in sparse matrix problems,
Report 74-10, CERN European Organization for Nuclear Research, Geneva.

Bartels, R. H. (1971). A stabilization of the simplex method, Num. Math. 16, pp. 414-434.

Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming using the
LU decomposition, Comm. ACM 12, pp. 266-268.

Bartels, R. H., Golub, G. H. and Saunders, M. A. (1970). "Numerical techniques in mathematical
programming", in Nonlinear Programming (J. B. Rosen, 0. L. Mangasarian and K. Ritter,
eds.), pp. 123-176, Academic Press, London and New York.

Beale, E. M. L. (1967) 'An introduction to Beale's method of quadratic programming", in
Nonlinear Programming (J. Abadie, ed.), pp. 143-153, Academic Press, London and New
York.

Beale, E. M. L. (1978). "Nonlinear programming using a general mathematical programming
system", in Design and Implementation of Optimization Software (H. J. Greenberg, ed.), pp.
259-279, Sijthoff and Noordhoff, Netherlands.

Bisschop, J. and Meeraus, A. (1977). Matrix augmentation and partitioning in the updating of
the basis inverse, Math. Prog. 13, pp. 241-254.

Bisschop, J. and Meeraus, A. (1980). Matrix augmentation and structure preservation in linearly
constrained control problems, Math. Proj. 18, pp. 7-15.

Brodlie, K. W. (1977). "Unconstrained optimization", in The State of the Art in Numerical
Analysis (D. Jacobs, ed.), pp. 229-268, Academic Press, London and New York.

Coleman, T. F. and Mord, J. J. (1981). Estimation of sp- Jacobian matrices and graph coloring
problems, Report ANL-81-39, Argonne National Laboratory, Argonne, Illinois.

Coleman, T. F. and Mord, J. J. (1982a). Software for estimating sparse Jacobian matrices, Report
ANL-82-37, Argonne National Laboratory, Argonne, Illinois.

Coleman, T. F. and Mord, J. J. (1982b). Estimation of sparse Hessian matrices and graph coloring
problems, to appear.

Concus, P., Golub, G. H. and O'Leary, D. P. (1976). "A generalized conjugate-gradient method
for the numerical solution of elliptic partial differential equations', in Sparse Matrix Comp-
utations (J. R. Bunch and D. J. Rose, eds.), pp. 309-332, Academic Press, London and New
York.

Cottle, R. W. (1974). Manifestations of the Schur complement, Linear Algebra and its Applics.
8, pp. 189-211.

Cottle, R. W. and Djang, A. (1979). Algorithmic equivalence in quadratic programming, J. Opt.
Th. Applics. 28 pp. 275-301.

Curtis, A. R., Powell, M. J. D. and Reid, J. K. (1974). On the estimation of sparse Jacobian
matrices, J. Inst. Maths. Applics. 13, pp. 117-119.

Dantsig, G. B. (1963). Linear Programming and Etensions, Princeton University Press, Prince-
ton, New Jersey.

' " " "-" " . . .. .....- -". ..- " .- * .*--". -. * _"_



SparN Maiz Methods h: Opthmistion

Dantuig, G. B., Dempster, M. A. H. and Kalio, M. J. (eds.) (1981). Large-Scale Linear Program-
;mh (Volume ), IASA Collaborative Proceedings Series, CP-81-51, HASA, Laxenburg,

Austria.
Dantsig, G. B. and Orchard-Hays, W. (1954). The product form of the inverse in the simplex

method, Math. Comp. 8, pp. 64-67.

Dantsig, G. B. and Wolfe, P. (1960). The decomposition principle for linear programs, Operations
Research 8, pp. 110-111.

Dembo, R. S., Eisenstat, S. C. and Steihaug T. (1982). Inexact Newton methods, S/AM 3. Numer.
Anal. 19, pp. 400-408.

Dembo, R. S. and Steihaug T. (1980). Truncated-Newton algorithms for large-scale unconstrained
optimization, Working Paper #48, School of Organization and Management, Yale University.

Dennis, J. E., Jr. and Marwil, E. S. (1982). Direct secant updates of matrix factorisations, Math.
Comp. 38, pp. 459-474.

Dennis, J. E., Jr. and Mord, J. J. (1977). Quasi-Newton methods, motivation and theory, SLAM
Review 19, pp. 46-89.

Dennis, J. E., Jr. and Schnabel, R. B. (1979). Least change secant updates for quasi-Newton
methods, SIAM Review 21, pp. 443-469.

Duff, I. S. (1982). A survey of sparse matrix software, Report AERE-R10512, Atomic Energy
Research Establishment, Harwell, England. To appear in Sources and Development of
Mathematical Software (W. R. Cowell, ed.), Prentice-Hall, 1983.

Duff, I. S. and Reid, 1. K. (1982). The multifrontal solution of indefinite sparse symmetric linear
systems, Report CSS 122, Atomic Energy Research Establishment, Harwell, England.

Duff, I. S. and Reid, J. K. (1983). Direct methods for solving sparse systems of linear equations,
presented at the Sparse Matrix Symposium, Fairfield Glade, Tennessee, 1982 (to appear in
SIAM J. Sci. Stat. Comput.).

Fiacco, A. V. and McCormick, G. P. (1968). Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley and Sons, New York and Toronto.

Fletcher, R. (1974). 'Methods related to Lagrangian functions', in Numerical Methods for
;? Constrained Optimization (P. E. Gill and W. Murray, eds.), pp. 219-240, Academic Press,

London and New York.

Fletcher, R. (1980). Practical Methods of Optimization, Volume 1, Unconstrained Optimization,
John Wiley and Sons, New York and Toronto.

Fletcher, R. (1981). Practical Methods of Optimization, Volume 2, Constrained Optimisation,
John Wiley and Sons, New York and Toronto.

Fletcher, R. and Ren, C. M. (1964). Function minimization by conjugate gradients, Computer
Journal 7, pp. 149-154.

Forrest, J. J. H. and Tomlin, J. A. (1972). Updating triangular factors of the basis to maintain
sparsity in the product form simplex method, Math. Prog. 2, pp. 263-278.

Fourer, R. (1982). Solving starcm linear programs by the simplex method, 1: Inversion, Math.
Prog. 23, pp. 274418.

George, J. A. and Heath, M. T. (1980). Solution of sparse linear least squares problems using
Givens rotations, Linear Algebra and its AppliCs. 34, pp. 69-83.

-.. -



Rdemce 2

George, J. A. and Ng, Z. (1982). Solution of sparse underdetermined systems of linear equations,
Report CS-82-39, Department of Computer Science, University of Waterloo, Canada.

Gill, P. E., Golub, G. H., Murray, W. and Saunders, M. A. (1974). Methods for modifying matrix
factorizations, Math. Comp. 28, pp. 505-535.

Gill, P. E. and Murray, W. (1974). Newton-type methods for unconstrained and linearly con-
strained optimization, Math. Prog. 28, pp. 311-350.

Gill, P. E. and Murray, W. (1979). Conjugate-gradient methods for large-scale nonlinear optim-
isation, Report SOL 79-15, Department of Operations Research, Stanford University, Calif-
ornia.

*: Gill, P. E., Gould, N. I. M., Murray, W., Saunders, M. A. and Wright, M. H. (1982). Range-space
methods for convex quadratic programming, Report SOL 82-14, Department of Operations
Research, Stanford University, California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1981). "QP-based methods
for large-scale nonlinearly constrained optimization', in Nonlinear Programming 4, (0. L.
Mangasarian, R. R. Meyer and S. M. Robinson, eds.), pp. 57-98, Academic Press, London
and New York.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press,
London and New York.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1983). Truncated conjugate-gradient
methods, to appear.

Gille, P. and Loute, E. (1981). A basis factorization and updating technique for staircase
structured systems of linear equations, Discussion Paper 8113, CORE, Universit4 Catholique
de Louvain, Louvain-la-Neuve, Belgium.

Gille, P. and Loute, E. (1982). Updating the LU Gaussian decomposition for rank-one corrections;
application to linear programming basis partitioning techniques, Cahier No. 8201, S6minaire
de Math6matiques Appliqudes aux Sciences Humaines, Facult6s Universitaires Saint-Louis,
Brussels, Belgium.

Griffith, R. E. and Stewart, R. A. (1961). A nonlinear programming technique for the optimization

of continuous processing systems, Management Science 7, pp. 379-392.

Heath, M. T. (1982). Some extensions of an algorithm for sparse linear least squares problems,
SIAM . Sci. Stat. Comput. 3, pp. 223-237.

Hellerman, E. and Rarick, D. (1971). Reinversion with the preassigned pivot procedure, Math.
Fro. 1, pp. 195-216.

Helleran, Z. and Rarick, D. (1972). 'The partitioned preassigned pivot procedure (F4 )', in
Spare Matrices and their Applications (D. J. Rose and R. A. Willoughby ads.), pp. 67-76,
Plenum Press, New York.

Hestenee, M. R. (1969). Multiplier and gradient methods, J. Opt. Th. Applc. 4, pp. 803-320.
Heetees, M. R. (190). Conjagate Direction Methods in Optimization, Springer-Verlag, New

" York.

Hetemee, M. R. and Stidel, Z. (1952). Methods of conjugate gradients for solving linear systems,
J. R .Nat. Bur. Stadards 49, pp. 409-436.

Kron, G. (196). Dlaptes, MaeDonald, London.



U ar. Mir ,iz Murethods in Optimiati n

Markawis, H. M. (1957). The elimination form of the inverse and its applications to linear
tprogramming, Management Science 3, pp. 255-2.

Marwil, E. S. (1978). Exploiting Sparsity in Newton-Type Methods, Ph. D. Thesis, Cornell Univ-
ersity, Ithaca, New York.

McCormick, S.T. (1981). Optimal approximation of sparse Hessians and its equivalence to a
graph coloring problem, Report SOL 81-22, Department of Operations Research, Stanford
University, California (to appear in Math. Prog., 1983).

Mor6, J. J. and Sorensen, D. C. (1982). Newton's method, Report ANL-82-8, Argonne National
Laboratory, Argonne, Illinois.

Murray, W. and Wright, M. H. (1982). Computation of the search direction in constrained
* optimization algorithm., Math. Prog. Study 16, pp. 62-83.

Murtagh, B. A. and Saunders, M. A. (1977). MINOS User's Guide, Report SOL 77-9, Department
of Operations Research, Stanford University, California.

Murtagh, B. A. and Saunders, M. A. (1978). Large-scale linearly constrained optimization, Math.
Prog. 14, pp. 41-72.

Murtagh, B. A. and Saunders, M. A. (1980). MINOS/AUGMENTED User's Manual, Report SOL
80-14, Department of Operations Research, Stanford University, California.

Murtagh, B. A. and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparse nonlinear constraints, Math. Prog. Study 16, pp. 84-118.

* Nash, S. G. (1982). Truncated-Newton Methods, Ph. D. Thesis, Computer Science Department,
Stanford University, Stanford, California.

O'Leary, D. P. (1982). A discrete Newton algorithm for minimizing a function of many variables,
Math. Prog. 23, pp. 20-33.

Page, C. C. and Saunders, M. A. (1975). Solutions of sparse indefinite systems of linear equations,
SLAM J. Numer. Anal. 12, pp. 617-629.

Palacios-Gomes, F., Laidon, L. S. and Kngquist, M. (1982). Nonlinear optimization by successive
linear programming, Management Science 36, 10, pp. 1106-1120.

Powell, M. J. D. (1969). "A method for nonlinear constraints in optimization problems, in
Optim nton (R. Fletcher, ed.), pp. 283-297, Academic Press, London and New York.

Powell, M. J. D. (1976). -A view of unconstrained optimization", in Optimiation In Action (L.
C. W. Dixon, ed.), pp. 117-152, Academic Press, London and New York.

Powell, M. J. D. (1981). A note on quasi-Newton formulae for sparse second derivative matrices,
Math. Prog. 2O, pp. 144-151.

Powell, M. J. D. (132). State-of-the-Art Tutorial on OVariable metric methods for constrained
optimization', Report DAMTP 1982/NA5, Dept. of Applied Mathematics and Theoretical
Physics, University of Cambridge, England.

Powell, M. J. D. and Toint, P. L. (1979). On the estimation of sparse Hesian matrices, SLAM J.
Nm.,. Anal. 16, pp. 1060-1074.

Reid, J. K. (1971). "On the method of conjugate gradients for the solution of large sparse systems
of linear equations, in Large Sparse Sets of Linear Equations (J. K. Reid, ed.), pp. 231-254,
Academic Press, London and New York.

' . " aas. .3. .- t" %- .t , ., . ."". ' . , *' -'; , / _ ' ",'-.."-t -'"-.",. ,.-.-'ta/ -" . "". -."-"-."'" .a"



V 71

References 2

Reid, J. K. (1976). Fortran subroutines for handling sparse linear programming bases, Report
AERE-R8269, Atomic Energy Research Establishment, Harwell, England.

Reid, J. K. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear

programming bases, Math. Prog. 24, pp. 55-69.
Robinson, S. M. (1972). A quadratically convergent algorithm for general nonlinear programming

problems, Math. Prog. 3, pp. 145-156.

* Rosen, J. B. (1978). 'Two-phase algorithm for nonlinear constraint problems', in Nonlinear
Programming 3 (0. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), pp. 97-124,

*. Academic Press, London and New York.
Rosen, J. B. and Kreuser, J. (1972). 6A gradient projection algorithm for nonlinear constraints',

in Numerical Methods for Non-Linear Optimization (F. A. Lootsma, ed.), pp. 297-300,
Academic Press, London and New York.

Saunders, M. A. (1976). -A fast, stable implementation of the simplex method using Bartets-
Golub updating', in Sparse Matrix Computations (J. R. Bunch and D. J. Rose, eds.), pp.
213-226, Academic Press, New York.

Schubert, L. K. (1970). Modification of a quasi-Newton method for nonlinear equations with a
* - sparse Jacobian, Math. Comp. 24, pp. 27-30.

Shanno, D.F. (1980). On variable metric methods for sparse Hessians, Math. Comp. 34, pp.
499-514.

Sorensen, D.C. (1982). Collinear scaling and sequential estimation in sparse optimization algo-
rithms, Math. Prog. Study 18, pp. 135-159.

Steihaug, T. (1980). Quasi-Newton methods for large-scale nonlinear problems, Working Paper
#49, School of Organization and Management, Yale University.

Steihaug, T. (1982). On the sparse and symmetric least-change secant update, Report MASC TR
82-4, Dept. of Mathematical Sciences, Rice University, Houston, Texas.

Stott, B., Alsac, 0. and Marinho, J. L. (1980). 'The optimal power flow problem', in Electric
Power Problems: The Mathematical Challenge (A. M. Erisman, K. W. Neves and M. H.
Dwarakanath, eds.) SIAM, Philadelphia.

Thapa, M. N. (1980). Optimization of Unconstrained Functions with Sparse Hessian Matrices,
Ph. D. Thesis, Stanford University, California.

Toint, P. L. (1977). On sparse and symmetric matrix updating subject to a linear equation, Math.
Comp. 31, pp. 954-961.

Toint, P. L. (1978). Some numerical results using a sparse matrix updating formula in uncon-
strained optimization, Math. Comp. 32, pp. 839-851.

Toint, P. L. (1979). On the superlinear convergence of an algorithm for solving a sparse minim-
isation problem, SLAM J. Numer. Anal. 16, pp. 1036-1045.

Tomlin, J. A. (1975). An accuracy test for updating triangular factors, Math. Prog. Study 4, pp.
142-145.

Wilkinson, J. H. (1965). The Algebraic Elgenvalue Problem, Oxford University Press.



UNCLASSIFIED
SS.0.TV CLAMUPICAY1ON OF TINS PAGS Dom &_"REPORT DOCUMETA.TMOM PAGE READ IKTRCIUS

_ _"_•__EPORE COWLINMG OEM
" 1. RPOT NUMBER .OVT ACCCSIONO, L RECIPIENT'S CATALOG NUMUE

SOL-82-17
. TITLE (md h St) 5. TYPE OF REPORT P EIOD COVERED

Sparse Matrix Methods in Optimization, Technical RePwt.)
s. PeRFoRMIN6 owG REPORT NUMBER

7. AUTNHOV Is . CONT0ACT GRANT NUMERI(e)
I

P1.R. Gill, W. Murray, N00014-75-C-0267.
M.A. Saunders and M.H. Wright DAAG29-81-K-0156

9. PERFORMING ORGANIZATION MiM AND ADONESI10 *- P ir TASK
Department of Operations Research - SOL ANIA a g Ko UNiTAS

Stanford University NR-047-143
Stanford, CA 94305

n1. CONTROLLING OFFICE NAME AND ADDRmS It. REPORT DATE
Office of Naval Research - Dept. of the Navy December 1982
800 N. Quincy Street IS. MUMOEN OF PAGES
Arlington, VA 22217 29

1. SECUITY CLASS. el JI MPlM
U.S. Army Research Office UNCLASSIFIED
P.O. Box 12211
Research Triangle Park, NC 27709 1" &.II CAIO/OWNGRADbNG

I. 018TIOUTION ITATEMENT (I Oi. kepwm)

This document has been approved for public release and sale;
its distribution is unlimited.

t?. DISTRISUTION STATEMENT (0s00 heu s ha o IS. II dshe~t bn 3twI)

If. SUPPLEMENTARY NOTES

tS. KEY lRD (RD uS avs. n m s o m=d Ohlo' of. mesr wilo M

Large-scale nonlinear optimization sparse matrices
sparse linear and nonlinear constraints linear and quadratic programing
updating matrix factorizations

9L ASYRHACT (C&Nu u OW ss00i8m0,s oN asss.mu, Me1 "0 &le MOO& -NO

See other side

0 OR W3 am-now Or IN Nov a is 81"7

SECUITY CLAW IATON OP THISPAE SS DaleN-



asMOTY cLMUPCAt'@ or THIS PAe'M" a~.m& J

Ai 22*CT - SOL 82-17
Sparse Matrix Methods in Optimization

P by P.Z. Gill, W. Murray, N.A. Saunders and N.H. Wright

Optimization algorithms typically require the solution of many systems
of linear equations 3kYIL - bk. When large numbers of variables or
constraints are present, these linear systems could account for such of thep-" total computation time.

Both direct and iterative equation solvers are needed in practice.
Unfortunately, most off-the-shelf solvers are designed for single systems,
whereas optimization problems give rise to hundreds or thousands of
systems. To avoid refactorization, or to speed the convergence of an
iterative method, it is essential to note that Nk is related to

Bk-l
We review various sparse matrices that arise in optimization, and

discuss compromises that are currently being made in dealing with them.
Since significant advances continue to be made with single-system solvers,
we give special attention to methods that allow such solvers to be used
repeatedly on a sequence of modified systems (e.g., the product-form
update; use of the Schur complement). The speed of factorizing a matrix
then becomes relatively less important than the efficiency of subsequent

-solves with very many right-hand sides.
At the same time, we hope that future improvements to linear-equation

software will be oriented more specifically to the case of related matrices

Bk-

-O.

-.
.5'

1.


